Milestone Review Flysheet

Institution The University of Akron

Milestone	CDR

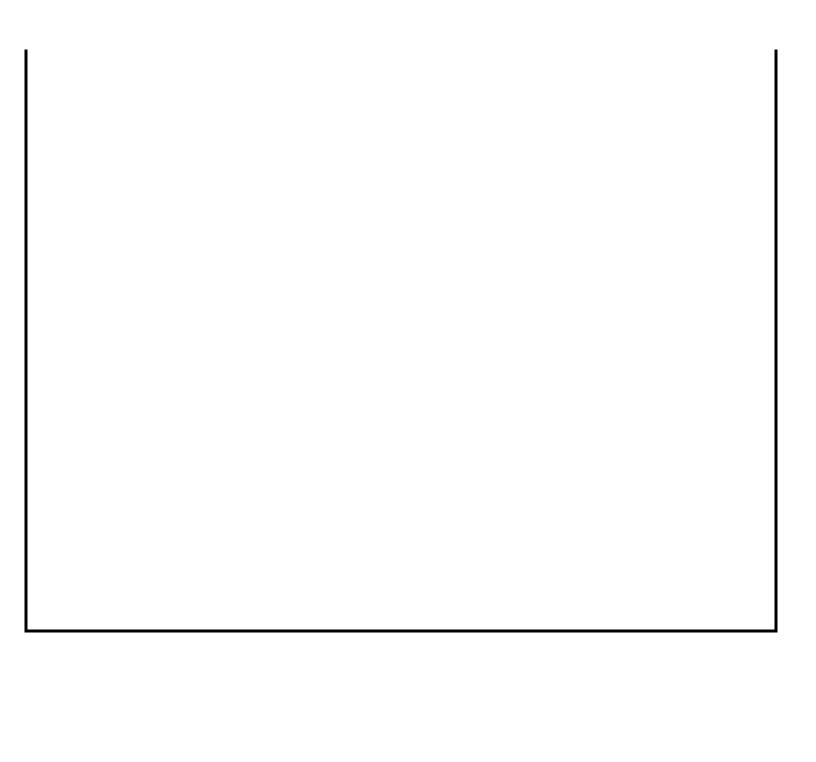
Vehicle Properties		
Total Length (in)	144	
Diameter (in)	5.125	
Gross Lift Off Weigh (lb)	53.7	
Airframe Material	Carbon Fiber/Fiberglass	
Fin Material	Fiberglass	
Coupler Length	8 inches	

Stability Analysis		
Center of Pressure (in from nose)	99.499	
Center of Gravity (in from nose)	85.797	
Static Stability Margin	2.65	
Static Stability Margin (off launch rail)	2.78	
Thrust-to-Weight Ratio	9.39	
Rail Size and Length (in)	144	
Rail Exit Velocity	88.28 ft/s	

Recovery System Properties					
	Dogue Parachute				
Manufactu	ırer/Model	Stude	nt Designed - El	iptical	
Si	ze	17 in diameter			
Altitu	de at Deployme	ent (ft)	nt (ft) Apogee		
Veloci	ty at Deploymer	nt (ft/s)	t (ft/s) 0		
Ter	minal Velocity (ft/s)	143.44		
Recov	very Harness Ma	terial Flat Webbed Nylon		oed Nylon	
Harness Size/Thickne		ss (in) 3/4"		/ 4"	
Recovery Harness Len		gth (ft) 18		8	
Harness/Airframe Interfaces		2500 lb swivel hoist ring. Quick link of shock cord to hoist ring through carabiner.			
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft-lbs) 6549		5751			

Recovery Electonics		
Altimeter(s)/Timer(s) (Make/Model)	PerfectFlite StratologgerCF (x2)	
Redundancy Plan	Each Altimeter is capable of drogue and main parachute deployment. Each altimeter will be connected to its own CO2 charge	
Pad Stay Time (Launch Configuration)	1 hour 30 minutes	

Motor Properties		
Motor Designation	L2200G-P	
Max/Average Thrust (lb)	697/504	
Total Impulse (lbf-s)	1147.4	
Mass Before/After Burn	10.5/4.93	
Liftoff Thrust (lb)	543	
Motor Retention	Thrust plate with center rings	


Ascent Analysis		
Maximum Velocity (ft/s)	630	
Maximum Mach Number	0.57	
Maximum Acceleration (ft/s^2)	401	
Target Apogee (From Simulations)	5574	
Stable Velocity (ft/s)	50	
Distance to Stable Velocity (ft)	4	

Recovery System Properties					
Main Parachute					
Manufactu	ırer/Model	Stude	nt Designed - A	nnular	
Si	ze		130 in diameter		
Altitu	de at Deployme	nt (ft) 850			
Veloci	ty at Deploymer	nt (ft/s)	143.44		
Ter	minal Velocity (ft/s)	11	.35	
Recovery Harness Materi		aterial	Flat Webbed Nylon		
Harness Size/Thickness		ss (in)	3/4"		
Recovery Harness Len		gth (ft) 16		.6	
Harness/Airframe Interfaces		2500 lb swivel hoist ring. Quick link of shock cord to hoist ring through carabiner.			
Kinetic Enerfy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft-lbs) 74.2		72.2	8		

Recovery Electonics		
Rocket Locators (Make/Model) Trimble Copernicus		
Transmitting Frequencies	Xbee-PRO 900: 900 MHz	
Black Powder Mass Drogue Chute (grams)	CO2 23g	
Black Powder Mass Main Chute (grams)	CO2 45g	

Мil	leston	a Ravi	iow I	Flye	heet
MILL	ESLUII	C IICV	ICVV	ГІУЭ	HEEL

Institution	The University of Akron Milestone CDR
	Payload Payload Payload Payload
	Overview
Payload 1	The payload will house a fragile material and protect it from the forces of a rocket launch and landing. It will utilize a spring/damper system, ballistic gel, and inflatable bladders. The bladders will be filled with air from the atmosphere using a pump.
	Overview
Payload 2	N/A
	Test Plans, Status, and Results
	Test Plans, Status, and Results
Ejection Charge Tests	A ground test will be done prior to sub-scale flight tests to ensure the selected CO2 amount is appropriate to fully and reliably eject the main and drogue parachutes.
Sub-scale Test Flights	A test flight was performed with a successful ascent, but an unsuccessful recovery. It was concluded that the black powder charge that is used to puncture the CO2 canister vented out the wrong end of the ejection system. It is further discussed in section 4.
Full-scale Test Flights	A full-scale flight is planned to happen before the end of February
	Milestone Review Flysheet
Institution	Milestone
	Additional Comments
	Additional Comments

